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What is MapReduce ?

• Programming Model for data-intense applications
• Proposed by Google in 2004
• Simple, inspired by functionnal programming

• programmer simply defines Map and Reduce tasks

• Building block for other parallel programming tools
• Strong open-source implementation: Hadoop
• Highly scalable

• Accommodate large scale clusters: faulty and unreliable resources

MapReduce: Simplified Data Processing on Large Clusters Jeffrey Dean and Sanjay Ghemawat, in OSDI’04:
Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December, 2004.
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MapReduce in Lisp

• (map f (list l1, . . . , ln))
• (map square ‘(1 2 3 4))
• (1 4 9 16)

• (+ 1 4 9 16)
• (+1 (+4 (+9 16)))
• 30
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MapReduce a la Google

Input

Mapper

Map(k , v)→ (k ′, v ′)

Reducer

Reduce(k ′, {v ′1, . . . , v ′n})→ v ′′

Output

Group(k ′, v ′) by k ′

• Map(key , value) is run on each item in the input data set
• Emits a new (key , val) pair

• Reduce(key , val) is run for each unique key emitted by the Map
• Emits final output
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Exemple: Word Count

• Input: Large number of text documents
• Task: Compute word count across all the document
• Solution :

• Mapper : For every word in document, emits (word, 1)
• Reducer : Sum all occurrences of word and emits (word, total_count)
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WordCount Example

/ / Pseudo−code f o r the Map f u n c t i o n
map( S t r i n g key , S t r i n g value ) :

/ / key : document name,
/ / value : document contents
foreach word i n s p l i t ( value ) :

Emi t In te rmed ia te ( word , ’ ’ 1 ’ ’ ) ;

/ / Peudo−code f o r the Reduce f u n c t i o n
reduce ( S t r i n g key , I t e r a t o r value ) :

/ / key : a word
/ / values : a l i s t o f counts
i n t word_count = 0 ;
foreach v i n values :

word_count += Parse In t ( v ) ;
Emit ( key , AsStr ing ( word_count ) ) ;

G. Fedak (INRIA, France) MapReduce Salvador da Bahia, Brazil, 22/10/2013 7 / 41



MapReduce Applications Skeleton

• Read large data set
• Map: extract relevant information from each data item
• Shuffle and Sort
• Reduce : aggregate, summarize, filter, or transform
• Store the result
• Iterate if necessary
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MaReduce + Distributed Storage

• Powerfull when associated with a distributed storage system
• GFS (Google FS), HDFS (Hadoop File System)
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The Execution Runtime

• MapReduce runtime handles transparently:
• Parallelization
• Communications
• Load balancing
• I/O: network and disk
• Machine failures
• Laggers
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Existing MapReduce Systems

• Google MapReduce
• Proprietary and close source
• Closely linked to GFS
• Implemented in C++ with Python and Java Bindings

• Hadoop
• Open source (Apache projects)
• Cascading, Java, Ruby, Perl, Python, PHP, R, C++ bindings (and certainly

more)
• Many side projects: HDFS, PIG, Hive, Hbase, Zookeeper
• Used by Yahoo!, Facebook, Amazon and the Google IBM research Cloud
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Other Specialized Runtime Environments

• Hardware Platform
• Multicore (Phoenix)
• FPGA (FPMR)
• GPU (Mars)

• Security
• Data privacy (Airvat)

• MapReduce/Virtualization
• EC2 Amazon
• CAM

• Frameworks based on
MapReduce

• Iterative MapReduce
(Twister)

• Incremental MapReduce
(Nephele, Online MR)

• Languages (PigLatin)
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File System for Data-intensive Computing

MapReduce is associated with parallel file systems

• GFS (Google File System) and HDFS (Hadoop File System)
• Parallel, Scalable, Fault tolerant file system
• Based on inexpensive commodity hardware (failures)
• Allows to mix storage and computation

GFS/HDFS specificities
• Many files, large files (> x GB)
• Two types of reads

• Large stream reads (MapReduce)
• Small random reads (usually batched together)

• Write Once (rarely modified), Read Many
• High sustained throughput (favored over latency)
• Consistent concurrent execution
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Anatomy of a MapReduce Execution

Reducer

Combine

Mapper

Input Files
Intermediate 

Results
Output Files

Output1

Mapper

Mapper

Reducer

Final OutputData Split

Mapper
Reducer

Mapper

Output2

Output3

Distribution

• Distribution :
• Split the input file in chunks
• Distribute the chunks to the DFS
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Anatomy of a MapReduce Execution

Reducer

Combine

Mapper

Input Files
Intermediate 

Results
Output Files

Output1

Mapper

Mapper

Reducer

Final OutputData Split

Mapper
Reducer

Mapper

Output2

Output3

Map

• Map :
• Mappers execute the Map function on each chunks
• Compute the intermediate results (i.e., list(k , v))
• Optionally, a Combine function is executed to reduce the size of the IR
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Anatomy of a MapReduce Execution

Reducer

Combine

Mapper

Input Files
Intermediate 

Results
Output Files

Output1

Mapper

Mapper

Reducer

Final OutputData Split

Mapper
Reducer

Mapper

Output2

Output3

Partition

• Partition :
• Intermediate results are sorted
• IR are partitioned, each partition corresponds to a reducer
• Possibly user-provided partition function
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Anatomy of a MapReduce Execution

Reducer

Combine

Mapper

Input Files
Intermediate 

Results
Output Files

Output1

Mapper

Mapper

Reducer

Final OutputData Split

Mapper
Reducer

Mapper

Output2

Output3

Shuffle

• Shuffle :
• references to IR partitions are passed to their corresponding reducer
• Reducers access to the IR partitions using remore-read RPC
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Anatomy of a MapReduce Execution

Reducer

Combine

Mapper

Input Files
Intermediate 

Results
Output Files

Output1

Mapper

Mapper

Reducer

Final OutputData Split

Mapper
Reducer

Mapper

Output2

Output3

Reduce

• Reduce:
• IR are sorted and grouped by their intermediate keys
• Reducers execute the reduce function to the set of IR they have received
• Reducers write the Output results
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Anatomy of a MapReduce Execution

Reducer

Combine

Mapper

Input Files
Intermediate 

Results
Output Files

Output1

Mapper

Mapper

Reducer

Final OutputData Split

Mapper
Reducer

Mapper

Output2

Output3

Combine

• Combine :
• the output of the MapReduce computation is available as R output files
• Optionally, output are combined in a single result or passed as a parameter

for another MapReduce computation
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Handling Failures

On very large cluster made of commodity servers, failures are not a rare
event.

Fault-tolerant Execution
• Workers’ failures are detected by heartbeat
• In case of machine crash :

1 In progress Map and Reduce task are marked as idle and re-scheduled to
another alive machine.

2 Completed Map task are also rescheduled
3 Any reducers are warned of Mappers’ failure

• Result replica “disambiguation”: only the first result is considered
• Simple FT scheme, yet it handles failure of large number of nodes.
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Scheduling
Data Driven Scheduling

• Data-chunks replication
• GFS divides files in 64MB chunks and stores 3 replica of each chunk on

different machines
• map task is scheduled first to a machine that hosts a replica of the input

chunk
• second, to the nearest machine, i.e. on the same network switch

• Over-partitioning of input file
• #input chunks >> #workers machines
• # mappers > # reducers

Speculative Execution
• Backup task to alleviate stragglers slowdown:

• stragglers : machine that takes unusual long time to complete one of the few
last map or reduce task in a computation

• backup task : at the end of the computation, the scheduler replicates the
remaining in-progress tasks.

• the result is provided by the first task that completes
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Speculative Execution in Hadoop

• When a node is idle, the scheduler selects a task
1 failed tasks have the higher priority
2 non-running tasks with data local to the node
3 speculative tasks (i.e., backup task)

• Speculative task selection relies on a progress score between 0 and 1
• Map task : progress score is the fraction of input read
• Reduce task :

• considers 3 phases : the copy phase, the sort phase, the reduce phase
• in each phase, the score is the fraction of the data processed. Example : a task

halfway of the reduce phase has score 1/3 + 1/3 + (1/3 ∗ 1/2) = 5/6

• straggler : tasks which are 0.2 less than the average progress score
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Issues with Hadoop Scheduler and heterogeneous
environment

Hadoop makes several assumptions :
• nodes are homogeneous
• tasks are homogeneous

which leads to bad decisions :
• Too many backups, thrashing shared resources like network bandwidth
• Wrong tasks backed up
• Backups may be placed on slow nodes
• Breaks when tasks start at different times
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The LATE Scheduler
The LATE Scheduler (Longest Approximate Time to End)

• estimate task completion time and backup LATE task
• choke backup execution :

• Limit the number of simultaneous backup tasks
• Slowest nodes are not scheduled backup tasks
• Only back up tasks that are sufficiently slow

• Estimate task completion time
• progress rate = progress score

execution time
• estimated time left = 1−progress score

progress rate

Improving MapReduce Performance in Heterogeneous Environments. Zaharia, M., Konwinski, A., Joseph, A.
D., Katz, R. and Stoica, I. in OSDI’08: Sixth Symposium on Operating System Design and Implementation, San
Diego, CA, December, 2008.
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Progress Rate ExampleProgress Rate Example 

Time (min) 

Node 1 

Node 2 

Node 3 

3x slower 

1.9x slower 

1 task/min 

1 min 2 min 
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LATE Example LATE Example 

Node 1 

Node 2 

Node 3 

2 min 

Time (min) 

Progress = 5.3% 

Estimated time left: 

(1-0.66) / (1/3) = 1 

Estimated time left: 

(1-0.05) / (1/1.9) = 1.8 
Progress = 66% 

LATE correctly picks Node 3 
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LATE Performance (EC2 Sort benchmark)

Heterogeneity
243VM/99 Hosts 1-7VM/Host

Department of Computer  Science, UIUC 

!"#$%&'($)*(+$,-(-'&.-/-*(0$
Each host 
sorted 128MB 
with a total of 
30GB data 

12-'3.-$!"#$45--675$&2-'$/382-9$$%#$&2-'$/&$:3;<754$

=$

=>#$

=>?$

=>@$

=>A$

B$

B>#$

B>?$

C&'4($ D-4($ 12-'3.-$

&
'(
)
*+
,-
./

01
.2
3'

42
.0
5,
)
.0

E&$D3;<754$ ,36&&5$E382-$ F1G!$%;+-67H-'$

?A$

Results
Average 27% speedup over
Hadoop, 31% over no backups

Stragglers
4 stragglers emulated by running
dd

Department of Computer  Science, UIUC 

!"#$%&'($)*(+$,-(-'&.-/-*(0$
Each host 
sorted 128MB 
with a total of 
30GB data 

12-'3.-$!"#$45--675$&2-'$/382-9$$%#$&2-'$/&$:3;<754$

=$

=>#$

=>?$

=>@$

=>A$

B$

B>#$

B>?$

C&'4($ D-4($ 12-'3.-$
&
'(
)
*+
,-
./

01
.2
3'

42
.0
5,
)
.0

E&$D3;<754$ ,36&&5$E382-$ F1G!$%;+-67H-'$

?A$

Results
Average 58% speedup over
Hadoop, 220% over no backups
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Outliers
• Stragglers : Tasks that take ≥ 1.5 the median task in that phase
• Recompute : When a task output is lost, dependant tasks that wait until

the output is regenerated

Wenowquantify themagnitude of the outlier problem,
before presenting our solution in detail.

 Quantifying the Outlier Problem

We characterize the prevalence and causes of outliers and
their impact on job completion times and cluster resource
usage. We will argue that three factors – dynamics, con-
currency and scale, that are somewhat unique to large
Map-Reduce clusters for e!cient and economic opera-
tion, lie at the core of the outlier problem. To our knowl-
edge, we are the "rst to report detailed experiences from
a large production Map-Reduce cluster.

. Prevalence of Outliers

Figure (a) plots the fraction of high runtime outliers and
recomputes in a phase. For exposition, we arbitrarily say
that a task has high runtime if its time to "nish is longer
than .x the median task duration in its phase. By re-
computes, we mean instances where a task output is lost
and dependent tasks wait until the output is regenerated.
We see in Figure (a) that  of phases have more

than  of their tasks as outliers. 'e "gure also shows
that  of the phases see no recomputes. 'ough rare,
recomputes have a widespread impact (§.). Two out of
a thousand phases have over  of their tasks waiting for
data to be recomputed.
How much longer do outliers run for? Figure (b)

shows that  of the runtime outliers last less than .
times the phase’s median task duration, with a uniform
probability of being delayed by between .x to .x. 'e
tail is heavy and long–  take more than x the me-
dian duration. Ignoring these if they happen early in a
phase, as current approaches do, appears wasteful.
Figure (b) shows that most recomputations behave

normally,  of them are clustered about the median
task, but  take over x longer.

. Causes of Outliers

To tease apart the contributions of each cause, we "rst de-
termine whether a task’s runtime can be explained by the
amount of data it processes or reads across the network3.
If yes, then the outlier is likely due to workload imbalance
or poor placement. Otherwise, the outlier is likely due to
resource contention or problematic machines.
Figure (a) shows that in  of the phases (top right),

all the tasks with high runtimes (i.e., over .x the me-

3For each phase, we !t a linear regression model for task lifetime
given the size of input and the volume of tra"c moved across low
bandwidth links. When the residual error for a task is less than ,
i.e., its run time is within [., .]x of the time predicted by this model,
we call it explainable.
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Figure : Prevalence of Outliers.

dian task) are well explained by the amount of data they
process or move on the network. Duplicating these tasks
would not make them run faster and will waste resources.
At the other extreme, in  of the phases (bottom le-),
none of the high runtime tasks are explained by the data
they process. Figure (b) shows tasks that take longer
than they should, as predicted by the model, but do not
take over .x the median task in their phase. Such tasks
present an opportunity for improvement. 'ey may "n-
ish faster if run elsewhere, yet current schemes donothing
for them.  of the phases (on the top right) have over
 of such improvable tasks.

Data Skew: It is natural to ask why data size varies across
tasks in a phase. Across phases, the coe!cient of vari-
ation ( stdev

mean ) in data size is . and . at the th and
th percentiles. From experience, dividing work evenly
is non-trivial for a few reasons. First, scheduling each ad-
ditional task has overhead at the job manager. Network
bandwidth is another reason. 'ere might be too much
data on a machine for a task to process, but it may be
worse to split the work into multiple tasks and move data
over the network. A third reason is poor coding practice.
If the data is partitioned on a key space that has too little
entropy, i.e., a few keys correspond to a lot of data, then
the partitions will di.er in size. Some reduce tasks are not
amenable to splitting (neither commutative nor associa-
tive []), and hence each partition has to be processed by
one task. Some joins and sorts are similarly constrained.
Duplicating tasks that run for long because they have a lot
of work to do is counter-productive.

Crossrack Tra$c: Reduce phases contribute over 
of the cross rack tra!c in the cluster, while most of the
rest is due to joins. We focus on cross rack tra!c because
the links upstream of the racks have less bandwidth than
the cumulative capacity of servers in the rack.

We "nd that crossrack tra!c leads to outliers in two
ways. First, in phases where moving data across racks is
avoidable (through locality constraints), a task that ends
up in a disadvantageous network location runs slower
than others. Second, in phases where moving data across
racks is unavoidable, not accounting for the competition
among tasks within the phase (self-interference) leads to
outliers. In a reduce phase, for example, each task reads

Causes of outliers
• Data skew: few keys corresponds to a lot of data
• Network contention : 70% of the crossrack traffic induced by reduce
• Bad and Busy machines : half of recomputes happen on 5% of the

machines
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The Mantri Scheduler

• cause- and resource- aware scheduling
• real-time monitoring of the tasks : define
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Figure : Percentage speed-up of job completion time in the
ideal case when (some combination of) outliers do not occur.
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Figure : #e Outlier Problem: Causes and Solutions

By inducing high variability in repeat runs of the same
job, outliers make it hard to meet SLAs. At median, the
ratio of stdev

mean in job completion time is ., i.e., jobs have a
non-trivial probability of taking twice as long or %nishing
half as quickly.
To summarize, we take the following lessons from our

experience.
• High running times of tasks do not necessarily indicate
slow execution - there are multiple reasons for legiti-
mate variation in durations of tasks.

• Every job is guaranteed some slots, as determined by
cluster policy, but can use idle slots of other jobs.
Hence, judicious usage of resources while mitigating
outliers has collateral bene%t.

• Recomputations a&ect jobs disproportionately. #ey
manifest in select faulty machines and during times of
heavy resource usage. Nonetheless, there are no indi-
cations of faulty racks.

 Mantri Design

Mantri identi%es points at which tasks are unable to make
progress at the normal rate and implements targeted solu-
tions. #e guiding principles that distinguishMantri from
prior outlier mitigation schemes are cause awareness and
resource cognizance.
Distinct actions are required for di&erent causes. Fig-

ure  speci%es the actions Mantri takes for each cause. If a
task straggles due to contention for resources on the ma-
chine, restarting or duplicating it elsewhere can speed it
up (§.). However, not moving data over the low band-
width cross rack links, and if unavoidable, doing so while
avoiding hotspots requires systematic placement (§.).
To speed up tasks that wait for lost input to be recom-
puted, we %nd ways to protect task output (§.). Finally,
for tasks with a work imbalance, we schedule the large

!"#$%
&%
'%

!% !%
!%!%
'!% !%

'!%

!"#$%
&%
'%

!% !%
!%

!%'!%
!% '!%

!"#$%

()*!(%
&%
'%

!%
+!%

!%
!%

'!% !%'!%,-($)".$/%

0"))/%1$(!-1!%

234)"5-!$%

67*%$-1)8%

Figure : A stylized example to illustrate our main ideas. Tasks
that are eventually killed are %lled with stripes, repeat instances
of a task are %lled with a lighter mesh.

tasks before the others to avoid being stuck with the large
ones near completion (§.).
#ere is a subtle point with outlier mitigation: reduc-

ing the completion time of a task may in fact increase the
job completion time. For example, replicating the output
of every task will drastically reduce recomputations–both
copies are unlikely to be lost at the same time, but can
slow down the job because more time and bandwidth are
used up for this task denying resources to other tasks that
are waiting to run. Similarly, addressing outliers early in
a phase vacates slots for outstanding tasks and can speed
up completion. But, potentially uses more resources per
task. Unlike Mantri, none of the existing approaches act
early or replicate output. Further, naively extending cur-
rent schemes to act early without being cognizant of the
cost of resources, as we show in §, leads to worse perfor-
mance.
Closed-loop action allows Mantri to act optimistically

by bounding the cost when probabilistic predictions go
awry. For example, even when Mantri cannot ascertain
the cause of an outlier, it experimentally starts copies. If
the cause does not repeatedly impact the task, the copy
can %nish faster. To handle the contrary case, Mantri con-
tinuously monitors running copies and kills those whose
cost exceeds the bene%t.
Based on task progress reports, Mantri estimates for

each task the remaining time to %nish, trem, and the pre-
dicted completion time of a new copy of the task, tnew .
Tasks report progress once every s or ten times in their
lifetime, whichever is smaller. We use ∆ to refer to this
period. We defer details of the estimation to §. and pro-
ceed to describe the algorithms for mitigating each of the
main causes of outliers. All that matters is that trem be
an accurate estimate and that the predicted distribution
tnew account for the underlying work that the task has to
do, the appropriateness of the network location and any
persistent slowness of the new machine.

. Resource-aware Restart

We begin with a simple example to help exposition. Fig-
ure  shows a phase that has seven tasks and two slots.

Reining in the Outliers in Map-Reduce Clusters using Mantri in G. Ananthanarayanan, S. Kandula, A.
Greenberg, I. Stoica, Y. Lu, B. Saha, E. Harris OSDI’10: Sixth Symposium on Operating System Design and
Implementation, Vancouver, Canada, December, 2010.
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Resource Aware Restart
• Restart Outliers tasks on better machines
• Consider two options : kill & restart or duplicate
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Figure : Percentage speed-up of job completion time in the
ideal case when (some combination of) outliers do not occur.
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Figure : #e Outlier Problem: Causes and Solutions

By inducing high variability in repeat runs of the same
job, outliers make it hard to meet SLAs. At median, the
ratio of stdev

mean in job completion time is ., i.e., jobs have a
non-trivial probability of taking twice as long or %nishing
half as quickly.
To summarize, we take the following lessons from our

experience.
• High running times of tasks do not necessarily indicate
slow execution - there are multiple reasons for legiti-
mate variation in durations of tasks.

• Every job is guaranteed some slots, as determined by
cluster policy, but can use idle slots of other jobs.
Hence, judicious usage of resources while mitigating
outliers has collateral bene%t.

• Recomputations a&ect jobs disproportionately. #ey
manifest in select faulty machines and during times of
heavy resource usage. Nonetheless, there are no indi-
cations of faulty racks.

 Mantri Design

Mantri identi%es points at which tasks are unable to make
progress at the normal rate and implements targeted solu-
tions. #e guiding principles that distinguishMantri from
prior outlier mitigation schemes are cause awareness and
resource cognizance.
Distinct actions are required for di&erent causes. Fig-

ure  speci%es the actions Mantri takes for each cause. If a
task straggles due to contention for resources on the ma-
chine, restarting or duplicating it elsewhere can speed it
up (§.). However, not moving data over the low band-
width cross rack links, and if unavoidable, doing so while
avoiding hotspots requires systematic placement (§.).
To speed up tasks that wait for lost input to be recom-
puted, we %nd ways to protect task output (§.). Finally,
for tasks with a work imbalance, we schedule the large
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Figure : A stylized example to illustrate our main ideas. Tasks
that are eventually killed are %lled with stripes, repeat instances
of a task are %lled with a lighter mesh.

tasks before the others to avoid being stuck with the large
ones near completion (§.).
#ere is a subtle point with outlier mitigation: reduc-

ing the completion time of a task may in fact increase the
job completion time. For example, replicating the output
of every task will drastically reduce recomputations–both
copies are unlikely to be lost at the same time, but can
slow down the job because more time and bandwidth are
used up for this task denying resources to other tasks that
are waiting to run. Similarly, addressing outliers early in
a phase vacates slots for outstanding tasks and can speed
up completion. But, potentially uses more resources per
task. Unlike Mantri, none of the existing approaches act
early or replicate output. Further, naively extending cur-
rent schemes to act early without being cognizant of the
cost of resources, as we show in §, leads to worse perfor-
mance.
Closed-loop action allows Mantri to act optimistically

by bounding the cost when probabilistic predictions go
awry. For example, even when Mantri cannot ascertain
the cause of an outlier, it experimentally starts copies. If
the cause does not repeatedly impact the task, the copy
can %nish faster. To handle the contrary case, Mantri con-
tinuously monitors running copies and kills those whose
cost exceeds the bene%t.
Based on task progress reports, Mantri estimates for

each task the remaining time to %nish, trem, and the pre-
dicted completion time of a new copy of the task, tnew .
Tasks report progress once every s or ten times in their
lifetime, whichever is smaller. We use ∆ to refer to this
period. We defer details of the estimation to §. and pro-
ceed to describe the algorithms for mitigating each of the
main causes of outliers. All that matters is that trem be
an accurate estimate and that the predicted distribution
tnew account for the underlying work that the task has to
do, the appropriateness of the network location and any
persistent slowness of the new machine.

. Resource-aware Restart

We begin with a simple example to help exposition. Fig-
ure  shows a phase that has seven tasks and two slots.

• restart or duplicate if P(tnew < trem) is high
• restart if the remaining time is large trem > E(tnew ) + ∆

• duplicates if it decreases the total amount of resources used
P(trem > tnew

(c+1)
c ) > δ, where c < 3 is the number of copies and

δ = 0.25
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Network Aware Placement

• Schedule tasks so that it minimizes network congestion
• Local approximation of optimal placement

• do not track bandwidth changes
• do not require global co-ordination

• Placement of a reduce phase with n tasks, running on a cluster with r
racks, In,r the input data matrix.

• Let d i
u, d i

v the data to be uploaded and downloaded, and bi
u, bi

d the
corresponding available bandwidth

• the placement of is arg min(max( d i
u

bi
v
,

d i
v

bi
d
))
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Mantri Performances

• Speed up the job median by
55%

• Network aware data
placement reduces the
completion time of typical
reduce phase of 31%

• Network aware placement of
tasks speeds up half of the
reduce phases by > 60%
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Figure : Comparing Mantri’s straggler mitigation with the
baseline implementation on a production cluster of thousands
of servers for the four representative jobs.

 reduction in completion time
avg min max

Phase . . .
Job . . .

Table : Comparing Mantri’s network-aware spread of tasks
with the baseline implementation on a production cluster of
thousands of servers.

to the cluster. Jobs that occupy the cluster for half the time
sped up by at least .. Figure (b) shows that  of
jobs see a reduction in resource consumption while the
others use up a few extra resources. 'ese gains are due
to Mantri’s ability to detect outliers early and accurately.
'e success rate ofMantri’s copies, i.e., the fraction of time
they (nish before the original copy, improves by .x over
the earlier build. At the same time, Mantri expends fewer
resources, it starts .x fewer copies. Further, Mantri acts
early, over  of its copies are started before the original
task has completed  of its work as opposed to 
with the earlier build.

Straggler Mitigation: To cross-check the above results
on standard jobs, we ran four prototypical jobs with and
without Mantri twenty times each. Figure  shows that
job completion times improve by roughly  and re-
source usage falls by roughly . 'e histograms plot
the average reduction, error bars are the th and th

percentiles of samples. Further, we logged all the progress
reports for these jobs. We (nd that Mantri’s predictor,
based on reports from the recent past, estimates trem to
within a . error of the actual completion time.

Placement of Tasks: To evaluate Mantri’s network-aware
spreading of reduce tasks, we ran Group By, a job with a
long-running reduce phase, ten times on the production
cluster. Table  shows that the reduce phase’s completion
time reduces by . on average causing the job to speed
up by an average of .. To understand why, we mea-
sure the spread of tasks, i.e., the ratio of the number of
concurrent reduce tasks to the number of racks they ran
in. High spread implies that some racks have more tasks
which interfere with each other while other racks are idle.
Mantri’s spread is . compared to . for the earlier build.

To compare against alternative schemes and to piece
apart gains from the various algorithms in Mantri, we
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Figure : Comparing straggler mitigation strategies. Mantri
provides a greater speed-up in completion time while using
fewer resources than existing schemes.

present results from the trace-driven simulator.

. CanMantrimitigate stragglers?

Figure  compares stragglermitigation strategies in their
impact on completion time and resource usage. 'e y-
axes weighs phases by their lifetime since improving the
longer phases improves cluster e/ciency. 'e (gures plot
the cumulative reduction in these metrics for the K
phases in Table  with each repeated thrice. For this sec-
tion, our common baseline is the scheduler that takes no
action on outliers. Recall from §. that the simulator re-
plays the task durations and the anomalies observed in
production.
Figures (a) and (b) show that Mantri improves

completion time by  and  at the th and th

percentiles and reduces resource usage by  and  at
these percentiles. From Figure (a), at the th per-
centile, Mantri sped up phases by an additional .x over
the . improvement of Hadoop, the next best scheme.
To achieve the smaller improvement Hadoop uses .
more resources (Fig. (b)). Map-Reduce and Dryad
have no positive impact for  and  of the phases
respectively. Up to the th percentile Dryad increases
the completion time of phases. LATE is similar in its time
improvement to Hadoop but uses fewer resources.
'e reason for poor performance is that they miss out-

liers that happen early in the phase and by not knowing
the true causes of outliers, the duplicates they schedule are
mostly not useful. Mantri and Dryad schedule . restarts
per task for the average phase (. and . for LATE and
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Towards Greener Data Center
• Sustainable Computing Infrastructures which minimizes the impact on the

environment
• Reduction of energy consumption
• Reduction of Green House Gaz emission
• Improve the use of renewable energy (Smart Grids, Co-location, etc...)

Solar Bay Apple Maiden Data Center (20MW, ) 00 acres : 400 000 m2. 20 MW peak
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MapReduce over the Internet

Computing on Volunteers’ PCs (a la SETI@Home)
• Potential of aggregate computing power and storage

• Average PC : 1TFlops, 4BG RAM, 1TByte disc
• 1 billion PCs, 100 millions GPUs + tablets + smartphone + STB

• hardware and electrical power are paid for by consumers
• Self-maintained by the volunteers

But ...

• High number of resources
• Volatility

• Low performance
• Owned by volunteer

• Scalable but mainly for embarrassingly parallel applications with few I/O
requirements

• Challenge is to broaden the application domain
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Challenge of MapReduce over the Internet

Reducer

Combine

Mapper

Input Files
Intermediate 

Results
Output Files

Output1

Mapper

Mapper

Reducer

Final OutputData Split

Mapper
Reducer

Mapper

Output2

Output3

• no shared file system nor
direct communication
between hosts

• Faults and hosts churn

• Needs Data Replica
Management

• Result Certification of
Intermediate Data

• Collective Operation
(scatter + gather/reduction)
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Prototype of MapReduce over BitDew

22/06/08 07:48bitdew.svg

Page 1 sur 1file:///Users/fedak/shared/projects/bitdew/trunk/doc/bitdew.svg

BitDew : a Programmable Environment for Large Scale Data Management
• provides an API and a runtime environment which integrates several P2P

technologies in a consistent way
• relies on metadata (Data Attributes) to drive transparently data

management operation : replication, fault-tolerance, distribution,
placement, life-cycle.

Towards MapReduce for Desktop Grids B. Tang, M. Moca, S. Chevalier, H. He, G. Fedak, in Proceedings of the
Fifth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing 3GPCIC, Fukuoka, Japan,
Novembre 2010
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Anatomy of a BitDew Application

• Clients
1 creates Data and
Attributes

2 put file into data slot created
3 schedule the data with their

corresponding attribute

• Reservoir
• are notified when data are

locally scheduled
onDataScheduled or
deleted onDataDeleted

• programmers install
callbacks on these events

• Clients and Reservoirs can
both create data and install
callbacks

Reservoir NodesService Nodes

Data Space

create
put
schedule

pull

pull

dc/ds
dr/dt
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Anatomy of a BitDew Application

• Clients
1 creates Data and
Attributes

2 put file into data slot created
3 schedule the data with their

corresponding attribute

• Reservoir
• are notified when data are

locally scheduled
onDataScheduled or
deleted onDataDeleted

• programmers install
callbacks on these events

• Clients and Reservoirs can
both create data and install
callbacks

Reservoir NodesService Nodes

Data Space

onDataScheduled

onDataSceduled

dc/ds
dr/dt
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Data Attributes

REPLICA : indicates how many occurrences of data should
be available at the same time in the system

RESILIENCE : controls the resilience of data in presence of ma-
chine crash

LIFETIME : is a duration, absolute or relative to the existence
of other data, which indicates when a datum is ob-
solete

AFFINITY : drives movement of data according to depen-
dency rules

TRANSFER PROTOCOL : gives the runtime environment hints about the file
transfer protocol appropriate to distribute the data

DISTRIBUTION : which indicates the maximum number of pieces
of Data with the same Attribute should be sent to
particular node.
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Implementing MapReduce over BitDew (1/2)

Initialisation by the Master

1 Data slicing : Master creates
DataCollection
DC = d1, . . . , dn, list of data
chuncks sharing the same
MapInput attribute.

2 Creates reducer tokens each
one with its own
TokenReducX attribute
(affinity set to the Reducer).

3 Creates and pin collector
tokens with
TokenCollector attribute
(affinity set to the Collector
Token).

Algorithm 2 EXECUTION OF MAP TASKS

Require: Let Map be the Map function to execute
Require: Let M be the number of Mappers and m a single mapper
Require: Let dm = d1,m, . . .dk,m be the set of map input data received by

worker m

1. {on the Master node}
2. Create a single data MapToken with affinity set to DC
3.
4. {on the Worker node}
5. if MapToken is scheduled then
6. for all data d j,m ∈ dm do
7. execute Map(d j,m)
8. create list j,m(k,v)
9. end for
10. end if

Algorithm 3 SHUFFLING INTERMEDIATE RESULTS

Require: Let M be the number of Mappers and m a single worker
Require: Let R be the number of Reducers
Require: Let listm(k,v) be the set of key, values pairs of intermediate

results on worker m

1. {on the Master node}
2. for all r ∈ [1, . . . ,R] do
3. Create Attribute ReduceAttrr with distrib = 1
4. Create data ReduceTokenr
5. schedule data ReduceTokenr with attribute ReduceTokenAttr
6. end for
7.
8. {on the Worker node}
9. split listm(k,v) in i fm,1, . . . , i fm,r intermediate files
10. for all file i fm,r do
11. create reduce input data irm,r and upload i fm,r
12. schedule data irm,r with a f f inity = ReduceTokenr
13. end for

workers, the ReduceTokenAttr has distrib=1 flag value which
ensures a fair distribution of the workload between reducers. Finally,
the Shuffle phase is simply implemented by scheduling the portioned
intermediate data with an attribute whose affinity tag is equal
to the corresponding ReduceToken.

Algorithm 4 presents the Reduce phase. When a reducer, that is
a worker which has the ReduceToken, starts to receive intermediate
results, it calls the Reduce function on the (k, list(v)). When all
the intermediate files have been received, all the values have been
processed for a specific key. If the user wishes, he can get all the
results back to the master and eventually combine them. To proceed
to this last step, the worker creates an MasterToken data, which is
pinnedAndScheduled. This operation means that the MasterToken
is known from the BitDew scheduler but will not be sent to any
nodes in the system. Instead, MasterToken is pinned on the Master
node, which allows the result of the Reduce tasks, scheduled with
a tag affinity set to MasterToken, to be sent to the Master.

D. Desktop Grid Features

We detail now some of the high level features that have been
developed to address the characteristics of Desktop Grid systems.

Latency hiding: Because computing resources are spread over
the Internet and because we cannot assume that direct communi-
cation between hosts is always possible due to firewall settings,
the communication latency can be orders of magnitude higher than
latency provided by interconnection networks found in clusters.
One of the mechanisms to hide high latency in parallel systems is

Algorithm 4 EXECUTION OF REDUCE TASKS

Require: Let Reduce be the Map function to execute
Require: Let R be the number of Mappers and r a single worker
Require: Let irr = ir1,r, . . . irm,r be the set of intermediate results received

by reducer r

1. {on the Master node}
2. Create a single data MasterToken
3. pinAndSchedule(MasterToken)
4.
5. {on the Worker node}
6. if irm,r is scheduled then
7. execute Reduce(irm,r)
8. if all irr have been processed then
9. create or with a f f inity = MasterToken
10. end if
11. end if
12.
13. {on the Master node}
14. if all or have been received then
15. Combine or into a single result
16. end if

overlapping communication with computation and prefetch of data.
We have designed a multi-threaded worker (see Figure 3) which can
process several concurrent files transfers, even if the protocol used is
synchronous such as HTTP for instance. As soon as a file transfer is
finished, the corresponding Map or Reduce tasks are enqueued and
can be processed concurrently. The number of maximum concurrent
Map and Reduce tasks can be configured, as well as the minimum
number of tasks in the queue before computations can start. In
MapReduce, prefetch of data is natural as data are staged on the
distributed file system before computations are launched.
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Figure 3. Worker handles the following threads: Mapper, Reducer and Redu-
cePutter. Q1, Q2 and Q3 represent queues and are used for communication between
threads.

Collective file operation: MapReduce processing is composed
of several collective file operations which in some aspects, look
similar with collective communications in parallel programming
such as MPI. Namely, the collectives are the Distribution, the
initial distribution of file chunks (similar to MPI_Scatter), the
Shuffle, that is the redistribution of intermediate results between the
Mapper and the Reducer nodes (similar to MPI_AlltoAll) and
the Combine which is the assemblage of the final result on the
master node (similar to MPI_Gather). We have augmented the
BitDew middleware with the notion of DataCollection to manipulate
set of data as a whole, and DataChunk, to manipulate a part of data
individually to implement the collective efficiently.

Fault-tolerance: In Desktop Grid, computing resources have
high failure rates, therefore the execution runtime must be resilient
to a massive number of crash failures. In the context of MapReduce,

Execution of Map Tasks

1 When a Worker receives
MapToken it launches the
corresponding MapTask
and computes the
intermediate values
listj,m(k , v).
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Implementing MapReduce over BitDew (2/2)

Algorithm 2 EXECUTION OF MAP TASKS

Require: Let Map be the Map function to execute
Require: Let M be the number of Mappers and m a single mapper
Require: Let dm = d1,m, . . .dk,m be the set of map input data received by

worker m

1. {on the Master node}
2. Create a single data MapToken with affinity set to DC
3.
4. {on the Worker node}
5. if MapToken is scheduled then
6. for all data d j,m ∈ dm do
7. execute Map(d j,m)
8. create list j,m(k,v)
9. end for
10. end if

Algorithm 3 SHUFFLING INTERMEDIATE RESULTS

Require: Let M be the number of Mappers and m a single worker
Require: Let R be the number of Reducers
Require: Let listm(k,v) be the set of key, values pairs of intermediate

results on worker m

1. {on the Master node}
2. for all r ∈ [1, . . . ,R] do
3. Create Attribute ReduceAttrr with distrib = 1
4. Create data ReduceTokenr
5. schedule data ReduceTokenr with attribute ReduceTokenAttr
6. end for
7.
8. {on the Worker node}
9. split listm(k,v) in i fm,1, . . . , i fm,r intermediate files
10. for all file i fm,r do
11. create reduce input data irm,r and upload i fm,r
12. schedule data irm,r with a f f inity = ReduceTokenr
13. end for

workers, the ReduceTokenAttr has distrib=1 flag value which
ensures a fair distribution of the workload between reducers. Finally,
the Shuffle phase is simply implemented by scheduling the portioned
intermediate data with an attribute whose affinity tag is equal
to the corresponding ReduceToken.

Algorithm 4 presents the Reduce phase. When a reducer, that is
a worker which has the ReduceToken, starts to receive intermediate
results, it calls the Reduce function on the (k, list(v)). When all
the intermediate files have been received, all the values have been
processed for a specific key. If the user wishes, he can get all the
results back to the master and eventually combine them. To proceed
to this last step, the worker creates an MasterToken data, which is
pinnedAndScheduled. This operation means that the MasterToken
is known from the BitDew scheduler but will not be sent to any
nodes in the system. Instead, MasterToken is pinned on the Master
node, which allows the result of the Reduce tasks, scheduled with
a tag affinity set to MasterToken, to be sent to the Master.

D. Desktop Grid Features

We detail now some of the high level features that have been
developed to address the characteristics of Desktop Grid systems.

Latency hiding: Because computing resources are spread over
the Internet and because we cannot assume that direct communi-
cation between hosts is always possible due to firewall settings,
the communication latency can be orders of magnitude higher than
latency provided by interconnection networks found in clusters.
One of the mechanisms to hide high latency in parallel systems is

Algorithm 4 EXECUTION OF REDUCE TASKS

Require: Let Reduce be the Map function to execute
Require: Let R be the number of Mappers and r a single worker
Require: Let irr = ir1,r, . . . irm,r be the set of intermediate results received

by reducer r

1. {on the Master node}
2. Create a single data MasterToken
3. pinAndSchedule(MasterToken)
4.
5. {on the Worker node}
6. if irm,r is scheduled then
7. execute Reduce(irm,r)
8. if all irr have been processed then
9. create or with a f f inity = MasterToken
10. end if
11. end if
12.
13. {on the Master node}
14. if all or have been received then
15. Combine or into a single result
16. end if

overlapping communication with computation and prefetch of data.
We have designed a multi-threaded worker (see Figure 3) which can
process several concurrent files transfers, even if the protocol used is
synchronous such as HTTP for instance. As soon as a file transfer is
finished, the corresponding Map or Reduce tasks are enqueued and
can be processed concurrently. The number of maximum concurrent
Map and Reduce tasks can be configured, as well as the minimum
number of tasks in the queue before computations can start. In
MapReduce, prefetch of data is natural as data are staged on the
distributed file system before computations are launched.
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Figure 3. Worker handles the following threads: Mapper, Reducer and Redu-
cePutter. Q1, Q2 and Q3 represent queues and are used for communication between
threads.

Collective file operation: MapReduce processing is composed
of several collective file operations which in some aspects, look
similar with collective communications in parallel programming
such as MPI. Namely, the collectives are the Distribution, the
initial distribution of file chunks (similar to MPI_Scatter), the
Shuffle, that is the redistribution of intermediate results between the
Mapper and the Reducer nodes (similar to MPI_AlltoAll) and
the Combine which is the assemblage of the final result on the
master node (similar to MPI_Gather). We have augmented the
BitDew middleware with the notion of DataCollection to manipulate
set of data as a whole, and DataChunk, to manipulate a part of data
individually to implement the collective efficiently.

Fault-tolerance: In Desktop Grid, computing resources have
high failure rates, therefore the execution runtime must be resilient
to a massive number of crash failures. In the context of MapReduce,

Shuffling Intermediate Results

1 Worker partitions
intermediate results
according to the partition
function and the number of
reducers and creates
ReduceInput with the
attribute ReducTokenR.

Execution of Reduce tasks

1 When a reducer receives
ReduceInput irm,r files it
lauches the corresponding
launch ReduceTask
Reduce(irm,r ).

2 When all the irr have been
processed, the reducer
combines the result in a
single final result Or .

3 eventually, the final result
can be sent back to the
master using the
TokenCollector
attribute.
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Special features and optimizations (1/2)

Latency hiding Implement a multi-thredead worker to ovelap communication
and computation. The number of maximum concurrent Map and
Reduce tasks can be configured, as well as the minimum
number of tasks in the queue before computations can start.

Fault-tolerance In Desktop Grid, computing resources have high failure rates,
failures can happen during the computation, either execution of
Map or Reduce tasks, or during the communication, that is file
upload and download. We simply toggle the resilient flag on the
attributes associated to MapInput data and ReduceToken
token. Because intermediate results irj,r , j ∈ [1,m] have the
affinity set to ReduceTokenr , they will be automatically
downloaded by the node on which the ReduceToken data is
rescheduled.
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MapReduce/BitDew
• Barrier-free computation Because of fault tolerance, several replica of the

same data can exist in the system, in particular, intermediate results can
be duplicated. To tolerate the replication of intermediate results Reducer
nodes detects that several versions of the same intermediate file exist in
the queue and only process the first one. Early reduction combined with
the replication of intermediate results allowed us to remove the barrier
between Map and Reduce tasks.

• 2-level scheduler First, the placement of data on host is ensured by the
BitDew scheduler, which is mainly guided by the attribute properties
given to data. Second, workers periodically report to the MR-scheduler,
running on the master node the state of their ongoing computation. The
master node can then determine if there are more nodes available than
tasks to execute which can avoid the lagger effect.

• Distributed Result Checking Because intermediate results might be too
large to be sent back to the server, result certification mechanism cannot
be centralized as it is currently implemented in existing Desktop Grid
systems. Solution is to create several replicats of Mapinput and Reducer
and select correct results by majority voting.
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BitDew Collective Communication
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Figure 5. Execution time of the Broadcast, Scatter, Gather collective for a 2.7GB
file to a varying number of nodes.

The next experiment evaluates the performance of the collective
file operation. Considering that we need enough chunks to measure
the Scatter/Gather collective, we selected 16MB as the chunks size
for Scatter/Gather measurement and 48MB for the broadcast. The
benchmark consists of the following: we prepare a 2.7GB large file
into chunks and measure the time to transfer the chunks to all of the
nodes according to the collective scheme. Broadcast measurement
is conducted using both FTP and BitTorrent, while FTP protocol is
used for Scatter/Gather measurement. The broadcast, scatter, gather
results are presented respectively in the Figure 5. The time to broad-
cast the data linearly increases with the number of nodes because
nodes compete for network bandwidth, and using BitTorrent obtains
a better efficiency than using FTP in the same number of nodes. With
respect to the gather/scatter, each node only downloads/uploads part
of all chunks, and the time remain constant because the amount of
data transferred does not increase with the number of nodes.

B. MapReduce Evaluation

We evaluate now the performance of our implementation of
MapReduce. The benchmark used is the WordCount application,
which is a representative example of MapReduce application,
adapted from the Hadoop distribution. WordCount counts the num-
ber of occurrences of each word in a large collection of documents.
The file transfer protocol used is HTTP protocol.

The first experiment evaluates the scalability of our implementa-
tion when the number of nodes increases. Each node has a different
5GB file to process, splitted into 50 local chunks. Thus, when the
number of nodes doubles, the size of the whole document counted
doubles too. For 512 nodes2, the benchmark processes 2.5TB of data
and executes 50000 Map and Reduce tasks. Figure 6 presents the
throughput of the WordCount benchmark in MB/s versus the number
of worker nodes. This result shows the scalability of our approach
and illustrates the potential of using Desktop Grid resources to
process a vast amount of data.

The next experiment aims at evaluating the impact of a varying
number of mappers and reducers. Table II presents the time spent
in Map function, the time spent in Reduce function and the total
makespan of WordCount for a number of mappers varying from 4
to 32 and a number of reducers varying from 1 to 16. As expected,
the Map and Reduce time decreases when the number of mappers
and reducers increases. The difference between the makespan and

2GdX has 356 double core nodes, so to measure the performance on 521 nodes
we run two workers per node on 256 nodes.
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Figure 6. Scalability evaluation on the WordCount application: the y axis presents
the throughput in MB/s and the x axis the number of nodes varying from 1 to 512.

Table II
EVALUATION OF THE PERFORMANCE ACCORDING TO THE NUMBER OF MAPPERS

AND REDUCERS.

#Mappers 4 8 16 32 32 32 32
#Reducers 1 1 1 1 4 8 16
Map (sec.) 892 450 221 121 123 121 125

Reduce (sec.) 4.5 4.5 4.3 4.4 1 0.5
Makespan (sec.) 473 246 142 146 144 150

the Map plus Reduce time is explained by the communication and
time elapsed in waiting loops. Although the Reduce time seems
very low compared to the Map time, this is typical of MapReduce
application. A survey [16] of scientific MapReduce applications at
the research Yahoo cluster showed that more than 93% of the codes
where Map-only or Map-mostly applications.

C. Desktop Grid Scenario

In this section, we emulate a Desktop Grid on the GdX cluster
by confronting our prototype to scenarios involving host crashes,
laggers hosts and slow network connection.

The first scenario aims at testing if our system is fault tolerant,
that is, if a fraction of our system fails, the remaining participants
are able to terminate the MapReduce application. In order to
demonstrate this capacity, we propose a scenario where workers
crash at different times: the first fault (F1) is a worker node crash
while downloading a map input file, the second fault (F2) occurs
during the map phase and the third crash (F3) happens after the
worker has performed the map and reduce tasks. We execute the
scenario and emulate worker crash by killing the worker process.
In Figure 7 we report the events as they were measured during the
execution of the scenario in a Gantt chart. We denote w1 − w5 the
workers and m the master node. The execution of our experiment
begins with the master node uploading and scheduling two reduce
token files: Ut1 and Ut2 . Worker w1 receives t1 and worker w2
receives t2. Then, the master node uploads and schedules the map
input files (chunks) (UC1−5). Each worker downloads one such
chunk, denoted with DC1−5. Node w4 fails (F1) while downloading
map input chunk DC4 . As the BitDew scheduler periodically checks
whether participants are still present, after a short moment following
the failure, node w4 is considered to be failed. This conveys to the
rescheduling of C4 to node w2. Node w3 fails (F2) while performing
the map task M(C3). Then, chunk C3 is rescheduled to node w5.
At F3, node w1 fails after having already performed the map task
M(C1) and several reduce tasks: RF1,1 , RF1,2 and RF1,5 . The notation
RFp,k refers to the reduce task which takes as input the intermediate

Figure: Execution time of the Broadcast, Scatter, Gather collective for a 2.7GB file to a
varying number of nodes
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MapReduce Evaluation
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Figure 5. Execution time of the Broadcast, Scatter, Gather collective for a 2.7GB
file to a varying number of nodes.

The next experiment evaluates the performance of the collective
file operation. Considering that we need enough chunks to measure
the Scatter/Gather collective, we selected 16MB as the chunks size
for Scatter/Gather measurement and 48MB for the broadcast. The
benchmark consists of the following: we prepare a 2.7GB large file
into chunks and measure the time to transfer the chunks to all of the
nodes according to the collective scheme. Broadcast measurement
is conducted using both FTP and BitTorrent, while FTP protocol is
used for Scatter/Gather measurement. The broadcast, scatter, gather
results are presented respectively in the Figure 5. The time to broad-
cast the data linearly increases with the number of nodes because
nodes compete for network bandwidth, and using BitTorrent obtains
a better efficiency than using FTP in the same number of nodes. With
respect to the gather/scatter, each node only downloads/uploads part
of all chunks, and the time remain constant because the amount of
data transferred does not increase with the number of nodes.

B. MapReduce Evaluation

We evaluate now the performance of our implementation of
MapReduce. The benchmark used is the WordCount application,
which is a representative example of MapReduce application,
adapted from the Hadoop distribution. WordCount counts the num-
ber of occurrences of each word in a large collection of documents.
The file transfer protocol used is HTTP protocol.

The first experiment evaluates the scalability of our implementa-
tion when the number of nodes increases. Each node has a different
5GB file to process, splitted into 50 local chunks. Thus, when the
number of nodes doubles, the size of the whole document counted
doubles too. For 512 nodes2, the benchmark processes 2.5TB of data
and executes 50000 Map and Reduce tasks. Figure 6 presents the
throughput of the WordCount benchmark in MB/s versus the number
of worker nodes. This result shows the scalability of our approach
and illustrates the potential of using Desktop Grid resources to
process a vast amount of data.

The next experiment aims at evaluating the impact of a varying
number of mappers and reducers. Table II presents the time spent
in Map function, the time spent in Reduce function and the total
makespan of WordCount for a number of mappers varying from 4
to 32 and a number of reducers varying from 1 to 16. As expected,
the Map and Reduce time decreases when the number of mappers
and reducers increases. The difference between the makespan and

2GdX has 356 double core nodes, so to measure the performance on 521 nodes
we run two workers per node on 256 nodes.
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Figure 6. Scalability evaluation on the WordCount application: the y axis presents
the throughput in MB/s and the x axis the number of nodes varying from 1 to 512.

Table II
EVALUATION OF THE PERFORMANCE ACCORDING TO THE NUMBER OF MAPPERS

AND REDUCERS.

#Mappers 4 8 16 32 32 32 32
#Reducers 1 1 1 1 4 8 16
Map (sec.) 892 450 221 121 123 121 125

Reduce (sec.) 4.5 4.5 4.3 4.4 1 0.5
Makespan (sec.) 473 246 142 146 144 150

the Map plus Reduce time is explained by the communication and
time elapsed in waiting loops. Although the Reduce time seems
very low compared to the Map time, this is typical of MapReduce
application. A survey [16] of scientific MapReduce applications at
the research Yahoo cluster showed that more than 93% of the codes
where Map-only or Map-mostly applications.

C. Desktop Grid Scenario

In this section, we emulate a Desktop Grid on the GdX cluster
by confronting our prototype to scenarios involving host crashes,
laggers hosts and slow network connection.

The first scenario aims at testing if our system is fault tolerant,
that is, if a fraction of our system fails, the remaining participants
are able to terminate the MapReduce application. In order to
demonstrate this capacity, we propose a scenario where workers
crash at different times: the first fault (F1) is a worker node crash
while downloading a map input file, the second fault (F2) occurs
during the map phase and the third crash (F3) happens after the
worker has performed the map and reduce tasks. We execute the
scenario and emulate worker crash by killing the worker process.
In Figure 7 we report the events as they were measured during the
execution of the scenario in a Gantt chart. We denote w1 − w5 the
workers and m the master node. The execution of our experiment
begins with the master node uploading and scheduling two reduce
token files: Ut1 and Ut2 . Worker w1 receives t1 and worker w2
receives t2. Then, the master node uploads and schedules the map
input files (chunks) (UC1−5). Each worker downloads one such
chunk, denoted with DC1−5. Node w4 fails (F1) while downloading
map input chunk DC4 . As the BitDew scheduler periodically checks
whether participants are still present, after a short moment following
the failure, node w4 is considered to be failed. This conveys to the
rescheduling of C4 to node w2. Node w3 fails (F2) while performing
the map task M(C3). Then, chunk C3 is rescheduled to node w5.
At F3, node w1 fails after having already performed the map task
M(C1) and several reduce tasks: RF1,1 , RF1,2 and RF1,5 . The notation
RFp,k refers to the reduce task which takes as input the intermediate

Figure: Scalability evaluation on the WordCount application: the y axis presents the
throughput in MB/s and the x axis the number of nodes varying from 1 to 512.
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Fault-Tolerance Scenario
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Figure: Fault-tolerance scenario (5 mappers, 2 reducers): crashes are injected during
the download of a file (F1), the execution of the map task (F2) and during the execution
of the reduce task on the last intermediate result (F3).
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Conclusion

• MapReduce Runtimes
• Attractive programming model for data-intense computing
• Many research issues concerning execution runtimes (heterogeneity,

stragglers, scheduling )
• Many others : security, QoS, iterative MapReduce,

• MapReduce beyond the Data Center :
• could enable data-intensive application on Desktop Grid
• created a first fully functional prototype specifically designed for Internet

MapReduce
• features multi-protocols file transfer, 2-levels data scheduling, automatic

replication and transparent data placement, distributed result checking,
barrier free computation etc...

• Want to learn more ?
• the MapReduce Workshop@HPDC (http://graal.ens-lyon.fr/mapreduce)
• Desktop Grid Computing ed. C. Cerin and G. Fedak – CRC Press
• our websites : http://www.bitdew.net and http://www.xtremweb-hep.org
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1 What is MapReduce?

MapReduce is a solution to address the analysis of huge amounts of data, even
in the order of petabytes. The analysis is performed in two steps which are
denoted (not surprisingly) Map and Reduce. The power of MapReduce comes
from the fact that in each step the task can be split between different nodes
that will run independently and in parallel. MapReduce implementations are
usually fault tolerant: if any node fails, the task can be reassigned to some other
node. Also, MapReduce shows very good scalability, MapReduce executions can
be run on several thousand nodes with the corresponding gain in speed. This
makes MapReduce an ideal solution to run distributed tasks on commodity
hardware.

MapReduce was introduced in [2]. There, the authors explain how MapRe-
duce emerged as a common solution to address different computation problems,
all of them involving the analysis of huge amounts of data and easily paral-
lelizable. The solution provides a framework to simplify the programming of
those tasks, that at the same time takes care of the addition and removal of
hosts, data transfer (in optimal ways), gathering of results, coordination of task
executors, execution planning, status reports, etc. As the authors themselves
state, this work was inspired by the map and reduce primitives present in some
functional languages.

1.1 How MapReduce Works

As mentioned before the algorithm has two basic steps: Map and Reduce. At
each step a special function defined by the user is run: one function for the Map
step, or Map function, and another for the Reduce step, or Reduce function.

∗email: luis.rodero-merino@ens-lyon.fr
†email: gilles.fedak@inria.fr
‡email: adrian.muresan@ens-lyon.fr
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Figure 1.1 shows an overview of MapReduce running on different nodes. The
input data is split into M parts (M is defined by the user), and each part is
sent to one of the nodes running the Map function (Map nodes). The Map
function input is a key K and a value V , the user must define how these keys
and values must be extracted from the data. The Map function “emits” several
new keys and values associated, possibly in domains different from those of K
and V . As it can be seen in the figure, the values associated to each key by
the Map function can be different in different nodes. The framework needs to
temporarily store those associations (keys and values) as they are the input for
the Reduce processing step.

The Reduce step starts once the Map function has finished. As in the case
of the Map function, the Reduce function is run in several nodes. The Reduce
function has as input the keys and values generated by the Map function. This
set is split into R parts (as M , R is defined by the user). The keys are distributed
among the Reduce nodes, so if for example key k1 is assigned to some Reduce
node, that node will retrieve all the key-value pairs where the key is k1 from
all the intermediate results created by the Map nodes. See for example how in
Figure 1.1 keys k1 and k2 are assigned to the Reduce node on the left, and how
all Map nodes send the values associated to those keys to that node (and only to
it). When all values from all keys assigned to that node have been received, the
Reduce node sorts them, resulting a list of ordered values. Then, the Reduce
function is called for each key in that reduce node, passing as input the key
and its list of sorted values. The output of the Reduce function will be another
list of values associated to that key (from the same domain of the intermediate
values). Finally, all keys and values are gathered from the Reduce nodes and
given to the user.

Both Map and Reduce nodes can be run in the same physical machine. Also,
depending on the amount of Map and Reduce nodes available, each node can
run one or more Map or Reduce tasks. Finally, there is a Master node that
coordinates the transfer of data, the call to the Map and Reduce function on
the corresponding nodes, etc.

1.2 MapReduce as a Cloud Solution

MapReduce defines an approach to deal with certain computational jobs that
demand high processing power and operates over big sets of data. It can be
implemented in a variety of ways, and depending on its features each imple-
mentation can be considered as a cloud solution or not.

To be considered as a proper cloud system, a MapReduce implementation
must release users from infrastructure (software and hardware) management
concerns, allowing them to focus on their own problem. Such MapReduce im-
plementations can be deemed as a PaaS system. They provide a framework and
runtime where developers just upload their code (and input data). The MapRe-
duce implementation will take care of handling that code execution (spawning
of map and reduce tasks, recovery from failures, load balancing among nodes...)
and retrieving the results. In this regard, it follows the same philosophy of other
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PaaS solutions, freeing developers from the tedious and repetitive tasks related
with the platform management (software stack and hosting machines). Hadoop
can be considered as a PaaS cloud system: once it is properly set in a produc-
tion environment, developers can use it as the runtime platform for their data
processing tasks. They only have to program their corresponding map and re-
duce functions and deploy them on the Hadoop cluster. They are not concerned
about distributing the load, moving code close to data, potential node failures,
etc Hadoop can be considered as a PaaS cloud system: once it is properly set
in a production environment, developers can use it as the runtime platform for
their data processing tasks. They only have to program their corresponding
map and reduce functions and deploy them on the Hadoop cluster. They are
not concerned about distributing the load, moving code close to data, potential
node failures, etc..

1.3 MapReduce Applied to Large Parallel Data Analysis

Although MapReduce was originally developed for use by web enterprises in
large data-centers, this technique has gained a lot of attention from the scientific
community and corporates for its applicability in large parallel data analysis (in-
cluding geographic, high energy physics, genomics, business intelligence etc. . . ).
In this section, we will survey how the MapReduce programming model can be
applied to a broad variety of applications ranging from Web and Cloud applica-
tions to high performance computing. Surveying this ever growing application
ecosystem, we will also outline the strength of MapReduce implementations,
and in particular Hadoop, as well as its shortcoming and the alternative sys-
tems that are being developed by the open source community and the academic
researchers.

Unsurprisingly the first applications which have demonstrated the potential
of MapReduce have been proposed by Google and other concurrent Web compa-
nies. To understand how MapReduce is employed, let’s first examine a classical
algorithm used by Google to sort the web pages by their estimated relevance.
The principle of the PageRank algorithm [10], proposed in 1999, is to compute
for each document a rank value based on the weights associated to the hyperlinks
which points to that document. After crawling the web, PageRank extracts the
links from the web documents and constructs a gigantic graph representing the
web. After that, the algorithm computes iteratively the PageRank values until
a convergence is detected. One can imagine how big is the graph representing
the Web considering that the web is now more than a trillion of unique URLs.
Several times a day, PageRank has to sort PetaBytes of data which shows how
crucial is it to have scalable and reliable infrastructure for data-intense comput-
ing. MapReduce is not only used to run PageRank but various core business
applications : commercial advertisements, comparative trends in search key-
words as well as day to day monitoring such as log analysis. As a proof of this
pervasiveness, the open-source Hadoop system is now used by the key Internet
companies such as Facebook, Baidu, Adobe, Ebay, Twitter, Hulu, LinkedLn,
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Yahoo1.
However, when conducting large data analysis, one may experience the fact

that the simplicity of the MapReduce model, which relies on a low semantic in-
terface, has the drawback of making the development of complex applications a
slow and tedious task. This is why higher level languages have been proposed on
top of MapReduce (DryadLINQ [16], Pig Latin [9], Sawzall[11]). For instance,
Pig Latin allows developers to program their data processing applications using
a declarative syntax has an expressiveness close to the SQL language. The Pig
compiler transforms the user’s queries in a sequence of MapReduce statements
and performs several optimizations on the generated code. The advantage for
the user is to benefit from the high degree of intrinsic parallelism and to exe-
cute the program on parallel infrastructures using the Hadoop framework. Con-
versely, the MapReduce programming model is finding a place in the database
world. For example, CouchDB[6] is a schema-free distributed database which
has been designed to store unstructured or semi-structured documents such as
blog posts, email or tweets for instance. Instead of using SQL queries, devel-
opers extract the relevant information from the database by writing Map and
Reduce tasks.

The scientific community is a traditional consumer of high performance par-
allel computing. As soon as the model appeared few years ago, some scientists
tried to apply the model to their research applications. The first noticeable ex-
periments have focused on machine learning [1], where ten classical algorithms
(linear regression, k-means, logistic regression, naive Bayes, gaussian, neural
network, backpropagation and more) were parallelized with almost linear speed-
up when executed on multicores machine. Following this pioneer work, various
similar and successful attempts have been made to mapreduce their algorithms
such as Monte-Carlo simulation, matrix multiplication, pair-wise computation,
image processing, genetic sequence search and many more. Today MapReduce
appears to be the language of choice to extract meaning from very large scien-
tific datasets. The combination of strong open-source solution like Hadoop with
the large scalability of Cloud infrastructure is offering a promising solution for
the scientists to solve the data deluge challenge they are facing. However, these
experiments have also outlined some shortcoming with the Hadoop system. One
of the key feature of scientific applications is their iterative nature because the
applications are often described as workflows of Map and Reduce tasks which it-
erates until a solution has been reached. The Twister environment[3] developed
at the Indiana University is a runtime execution system dedicated to iterative
cpu/data intensive application with optimizes the data scheduling and the reuse
of intermediate data between the iterations.

Although Hadoop and Elastic MapReduce by Amazon are the reference im-
plementation of MapReduce for clusters and for the Cloud, there is a need for im-
plementation dedicated for other types of computing infrastructures. The open
source community and the researchers in computer science have proposed no-

1The complete list of known Hadoop users can be found on the Haddop web page (http:
//hadoop.apache.org)
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ticeable alternative to Hadoop. [5] describes an implementation of MapReduce
on top of MPI, the message passing communication, which allows MapReduce
to be executed on Supercomputer or cluster with high performance network.
Phoenix [12] is an implementation of MapReduce for multicores and multipro-
cessors systems while [4] describes an implementation for GPU systems. In [8]
and [13], Desktop Grid versions of MapReduce are proposed which would allow
to use existing PCs in a LAN or provided by Internet users when they are idle
to run MapReduce applications.

MapReduce is now a well established technology in the Internet industry and
has found many early adopters in the scientific community. Surfing on the wave
of the NoSQL database, it would not be surprising to see a broader adoption by
all the major IT enterprises and why not database vendors. We can anticipate
that Hadoop and MapReduce are going to play a central role for the next future
in data manipulation and analysis.

2 About Hadoop

Hadoop2 is a project of the Apache Software Foundation (ASF) that consists
of several subprojects for scalable distributed computing. Its origins lay in the
Nutch project3, that tries to build an open-source web search engine. Nutch
developers found the same problems that Google had: the crawling and analysis
of web-pages (at web scale) requires huge amounts of computation over immense
sets of data. When the MapReduce paper [2] was published Nutch developers
implemented the same ideas for their own search engine. Later on, Yahoo hired
some Nutch developers to start the Hadoop project as a split of the Nutch
project under the ASF umbrella.

Hadoop is not just a framework to run MapReduce tasks. Instead, Hadoop is
formed by three core subprojects, each one having a well-defined functionality:

• Hadoop Common. Set of utilities used by the rest of Hadoop projects.
Also, it provides the libraries and scripts needed to start a Hadoop clus-
ter, as for example utilities to handle Hadoop’s filesystem (see paragraph
below), MapReduce libraries...

• Hadoop Data File System (HDFS). A file system for the management of
big data sets (in the order of terabytes or even petabytes) in distributed
environments. Understanding how HDFS works it is necessary to success-
fully operate Hadoop’s MapReduce, and helps to understand the kind of
analysis works Hadoop is oriented to. Thus, a brief description to HDFS
is provided in Section 2.1).

• Hadoop Map/Reduce. Hadoop’s MapReduce framework, explained in Sec-
tion 3.

2http://hadoop.apache.org
3http://nutch.sourceforge.net
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Also, there are several subprojects based on Hadoop’s MapReduce and/or
HDFS, like for example:

• Hive. It is a “data warehouse infrastructure” based on Hadoop.

• HBase. Column-oriented database, is part of the NoSQL set of solutions
for structured data that have appeared recently.

• Chukwa

We encourage the interested reader to further explore those projects purpose
and fundamentals.

2.1 Hadoop Distributed File System

In any Hadoop installation (sometimes called “Hadoop cluster”) HDFS is the
main building block, the pillar that all other Hadoop services such as MapRe-
duce use as basis4. Thus, it is necessary to understand how HDFS works before
addressing MapReduce functionality. This is only a brief description of HDFS,
more info is provided at Hadoop web site and in Hadoop books [7, 15, 14].

HDFS is a distributed file system with emphasis on high throughput and
failure tolerance. It is intended to be run on cluster made with commodity
hardware (it does not require expensive hardware to run efficiently), to handle
large data sets. It implements its own namespace, where data is organized in
files. Each file is split into blocks, and each block is copied to different hosts
in the cluster (typically three copies of each block are created). Having several
blocks of data allows for better reliability. Also, HDFS provides data location
awareness, which allows to assign computing tasks (such as those required by
MapReduce) to those nodes that are “closer” to the data. Thus, services and
applications using HDFS tend to move code to those nodes where data is stored,
instead of moving data to executor nodes. This make sense as Hadoop is oriented
to computations that involve the processing of huge amounts of data.

Consistency is managed by HDFS. Some simplifications are assumed that
make HDFS differ from other distributed file systems. Data in HDFS are written
only once (it cannot be rewritten), once the file is written and closed its contents
cannot be changed. This limits the set of services or applications that can run
on top of HDFS, but on the other hand fits very well the requirements of the
applications Hadoop is designed for.

The HDFS architecture is based on two types of nodes: the MasterNode and
the DataNode:

1. NameNode. There is only one NameNode process, that takes care of man-
aging the HDFS. It provides a namespace to identify files, and keeps a
mapping between each file in that namespace and the data blocks that
contain the file contents. There will be different replicas of each data

4In fact, Hadoop MapReduce can run on the local filesystem. However HDFS features
make it ideal to be used along with MapReduce works
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block, and each replica will be stored in different nodes of the Hadoop
cluster. The NameNode is aware of the location of all the replicas of each
data block, and decides where new replicas must be hosted. Whenever a
data access must be performed by some process, it calls the NameNode
to know where the data is located. Also, the NameNode ensures that the
configured number of replicas of each data block is always available. The
NameNode is a single point of failure for Hadoop. There can be other
secondary NameNodes running in the same cluster, but they only keep
track of the actions of the primary MasterNode to replace it in case it
fails. If no master NameNode is available, then all Hadoop services will
not be able to run.

2. DataNode. Typically, there is one DataNode for each host storing data in
the cluster. The DataNode stores HDFS data blocks (along with its meta-
data), serves this data to other processes running in the host and sends the
data to other DataNodes. DataNodes are coordinated by the NameNode.
Each DataNode sends heartbeat signals to the NameNode. Whenever the
NameNode does not receive heartbeats from some DataNode, it will make
new replicas of the data blocks stored by that failed DataNode. The goal
is to make sure that at all times the configure amount of data replicas are
available.

3 Hadoop Implementation of MapReduce

In Hadoop’s jargon, a job is a MapReduce computation, comprised of its input
data, its Map and Reduce functions and its configuration. The Map and Reduce
functions will be run as tasks. Usually, each function will be run by several tasks
in different nodes, each task processing one part of the input data.

Hadoop’s MapReduce service is provided by two types of nodes: JobTrackers
and TaskTrackers:

1. JobTracker. This node monitors the execution of MapReduce jobs. As
explained above, each MapReduce job is split into several Map and Re-
duce tasks. The JobTracker coordinates all these tasks and commands
where they must be executed. Ideally, this will happen in the same host
where data is already located or at least in a host in the same rack. The
JobTracker uses the NameNode to know where data is stored and sends
tasks to the known TaskTrackers. The JobTracker is a point of failure for
the Hadoop MapReduce service, if it fails no MapReduce jobs will be run.

2. TaskTracker. Receives tasks assignments from the JobTracker. Each Task-
Tracker process attends task execution petitions from the JobTracker, and
notifies it when some task is finished (successfully or not). A TaskTracker
has a defined number of tasks it can attend at the same time (slots). Each
TaskTracker sends periodically a heartbeat signal to the JobTracker car-
rying the number of available slots in that TaskTracker. This way, the
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JobTracker is aware of the amount of slots available at each host. This
information is necessary to plan task assignments. If after a certain time
the JobTracker does not receive any heartbeat from a certain TaskTracker,
the JobTracker will assume that node is down and will reassign the tasks
sent to that node to some other TaskTracker.

Usually, MapReduce will be run on top of the HDFS, so nodes will perform
I/O operations on that file system. Other data sources can be used instead
(Amazon S3, HTTP, FTP... or even the local filesystem) but then the system
will not be aware of data location, which is required to plan where tasks must
be run to minimize data traffic.

The JobTracker can used different scheduling algorithms to assign tasks to
TaskTracker depending on their free slots.

4 Installing Hadoop

First thing to do when installing Hadoop is which kind of setup is going to be
installed. Hadoop :

• Local A local setup runs Hadoop in your local machine as a single process,
and it is oriented to beginners that want to try and evaluate Hadoop. By
default, Hadoop is ready to operate in local mode.

• Pseudo-distributed All nodes run in the local machine, but in separate
processes.

• Cluster For “real” works in production environments, the cluster setup
must be chosen instead. This setup builds a Hadoop cluster where nodes
are distributed across physical hosts. As explained before, a Hadoop clus-
ter will have one NameNode, one JobTracker, and several DataNodes and
TaskTrackers. The NameNode and the JobTracker will usually run in their
own machines, while the rest of hosts will typically run one DataNode and
one TaskTracker each. This is depicted in Figure 4.

This section will explain how to install a minimum but complete Hadoop
cluster with a NameNode, a DataNode, a JobTracker and a TaskTracker. All
of them will be running in the same host, so this would be in fact a pseudo-
distributed installation by Hadoop terminology. But instead of starting all pro-
cesses at once we will start them one by one as if they were started in different
hosts, and each node will have its own set of configuration files instead of shar-
ing them as in typical pseudo-distributed installations of Hadoop. The goal of
this approach is to help to understand how the process of configuring and start-
ing each type of node in a cluster environment would be done, by allowing the
reader to start all nodes in separated steps without requiring having different
machines available. Once those concepts are clear, moving this to a Cluster
installation should be easy. Hence, from now on we will use the term cluster to
refer to both the typical Cluster installation and the setup explained here.
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4.1 Required Software

Hadoop has been extensively used in Linux-based environments. Running it on
top of Windows systems is possible but has not been thoroughly tested as yet.
Thus, we will assume that physical hosts run Linux.

Also, Hadoop requires a Java Runtime Environment (JRE) to work, version
6. Sun JRE is advised. We will assume that Java binaries (e.g. java command
to start java programs) are available from the command line.

Communication with Hadoop nodes will be done through ssh, so the ssh

utility must be installed and sshd daemons must be running on all cluster hosts.
Also, the rsync utility is likewise needed5.

$ sudo apt-get install ssh

$ sudo apt-get install rsync

Also, Hadoop nodes must be able to use ssh without having to set the pass-
word. This can be done as follows:

$ ssh-keygen -t dsa -P ’’ -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

This will allow our own user to ssh to the local machine without the need to
introduce the password. If hadoop is going to be run by other users, them
the contents of their $HOME/.ssh/id dsa.pub files must be added to their
$HOME/.ssh/authorized keys.

Hadoop software can be downloaded from Hadoop website6. Look for the
latest release. It will be a compressed .tar.gz file, uncompress it with the tar

utility. For example, assuming you downloaded the hadoop-0.20.2.tar.gz file:

$ tar -zxvf hadoop-0.20.2.tar.gz

This will create the hadoop-0.20.2 folder. From now on, we will assume that
the absolute path to that folder will be stored in the $HADOOP HOME environment
variable:

$ export HADOOP_HOME=/path_to_hadoop_folder/hadoop-0.20.2

WARNING: for the scripts to run properly, it is advised not to use spaces
in the $HADOOP HOME path.

The main binary is in $HADOOP HOME/bin/hadoop. This is a script that
first loads configuration settings by calling to another script in the same folder,
$HADOOP HOME/bin/hadoop-config.sh. And in fact, all scripts that start the
different Hadoop services call to that same common configuration script. In
hadoop-config.sh, the hadoop-env.sh script is called in turn. In that file
at least the $JAVA HOME environment variable must be set to the path the

5rsync is used by Hadoop for data replication among nodes. But users do not have to care
about this as this is done transparently. Hence we will not refer further to this tool

6http://hadoop.apache.org/common/releases.html
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folder where the JRE was installed (in Ubuntu, this would be /usr/lib/jvm/

java-6-sun). Truth is, most of Hadoop nodes configuration is through the
*.xml files in the $HADOOP HOME/conf folder (or whatever configuration folder
the user sets when calling the script). But being aware of the existence of these
scripts is useful for example if we want to pass certain parameters to the java
virtual machines running the nodes.

The hadoop binary can be used to run MapReduce tasks as a single process
(local setup), without the need of a name server service.

The following step is to start running a pseudo-distributed installation of
hadoop, by starting a NameNode, a DataNode, a JobTracker and a TaskTracker
in the localhost.

Hadoop has a single script to run its nodes as daemon processes, $HADOOP HOME/

bin/hadoop-daemon.sh, that calls to hadoop. Another script, $HADOOP HOME/

bin/hadoop-daemons.sh is used to call hadoop-daemon.sh in a list of remote
nodes (ssh connectivity with those remote nodes must be available), these list
is by default read from the $HADOOP HOME/conf/slaves file. Finally, this is used
by $HADOOP HOME/bin/start-dfs.sh and $HADOOP HOME/bin/start-mapred.sh,
commodity scripts to start the HDFS and MapReduce services at once. A typi-
cal pseudo-distributed installation would use the $HADOOP HOME/bin/start-all.sh

script, that in turn calls the start-dfs.sh and start-mapred.sh scripts. But,
as commented before, we will start nodes manually for a better understanding
of the startup process. Thus, we will only make use of the hadoop script.

4.2 Installation of a HDFS service

First, we will start a HDFS service with its NameNode and one DataNode.
The NameNode needs to use a folder to store the HDFS metadata it handles,
(i.e., the HDFS filesystem). So the initial step is to “format the filesystem”
in that folder. The folder to format is, by default /tmp/hadoop/dfs/name.
This can be changed by setting the dfs.name.dir parameter, which is defined
in the $HADOOP HOME/conf/hdfs-site.xml file. The value can be an absolute
or a relative path. The following code shows an example of the contents of
hdfs-site.xml to use ./data :

<configuration>

<property>

<name>dfs.name.dir</name>

<value>./data</value>

</property>

</configuration>

Now we only need to run the hadoop script (remember that $HADOOP HOME

and $JAVA HOME must be set!):

$ cd $HADOOP_HOME

$ bin/hadoop namenode -format
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This would prepare the folder ./data, relative to the folder from where
the script was called, to contain the HDFS data. Each time the NameNode is
started, it will check in that same parameter where the metadata is stored.

Once the data folder is ready the NameNode can be run. Nodes are started
also by the $HADOOP HOME/bin/hadoop script. The NameNode URI, where it
will listen for connections, is set in the core-site.xml file in the configuration
folder (by default $HADOOP HOME/conf, but this can be changed when calling
to the script), by the fs.default.name property. For example, if we want the
NameNode to listen for connections in port 9000 of the localhost the contents
of that file would be:

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:9000</value>

</property>

</configuration>

When the core-site.xml file is ready we must set the $HADOOP HOME vari-
able to the path where Hadoop was installed (the folder created when the cor-
responding hadoop-*-.tar.gz file was decompressed). Then we can start the
NameNode by running:

$ cd $HADOOP_HOME

$ bin/hdfs namenode

The following step is to start a DataNode. The network address the Data-
Node will listen to is given by the dfs.datanode.address, that is set in the
hdfs-site.xml. Of course, different DataNodes in the same Hadoop cluster
must have the same value for the fs.default.name in their core-site.xml

file, but different values in the dfs.datanode.address parameter. In general,
nodes in the same Hadoop cluster will have the same core-site.xml file but
different hdfs-site.xml files. If the DataNode is started from the same Hadoop
installation than the NameNode (i.e. from the same folder in the same host),
and to avoid mixing their configurations, we can copy the contents of the conf

directory to a new folder to store the DataNode configuration:

$ cd $HADOOP_HOME

$ cp -r conf confDataNode

Usually this will not be necessary in real Hadoop clusters as the NameNode
will not run in the same host than other nodes. But in this case and for the
sake of simplicity we are

And then the confDataNode/hdfs-site.xml file would be edited as needed.
Besides the dfs.datanode.address, in the hdfs-site.xml file we can use the
dfs.data.dir parameter to configure in which folder the DataNode must store
data. So the resulting hdfs-site.xml file could look like this:
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<configuration>

<property>

<name>dfs.data.dir</name>

<value>./dataNodeStore</value>

</property>

<property>

<name>dfs.datanode.address</name>

<value>localhost:8990</value>

</property>

</configuration>

Finally, to start the DataNode hadoop script is called again:

$ cd $HADOOP_HOME

$ bin/hadoop --config ./confDataNode datanode

Note how hadoop is instructed to read the configuration not from the default
directory but from confDataNode (from now on, when calling to the bin/hadoop
script, it will be assumed that it is called from the $HADOOP HOME folder).

Now that there is a HDFS system running, the user can store and retrieve
data from it (almost) like in any other filesystem by using the hadoop util.

Also, it is possible to browse the filesystem through a web interface that
the NameNode offers. It can be checked in localhost:50070. To change this
address the dfs.http.address in the hdfs-site.xml file can be used.

It is beyond the scope of this text to explain all the possible configuration
parameters of the HDFS system. All these parameters can be found in the
$HADOOP HOME/src/hdfs/hdfs-default.xml file, along with an explanation of
what are they intended for. The user should not modify this file, but use it
as reference. Similarly, there is a $HADOOP HOME/src/core/core-default.xml

file with the common configuration parameters of the Hadoop nodes.
To browse and operate the Hadoop filesystem the hadoop utility can be used

with the fs flag. If you run

$ bin/hadoop fs

the script will show all the HDFS contents manipulation options available
from the script. As before, $HADOOP HOME and $JAVA HOME must be set con-
veniently. All these operations are performed by contacting the NameNode,
whose address is read again from the $HADOOP HOME/conf/core-site.xml file.
To change this, you can apply a different configuration file (by using the -conf

flag) or use the -fs flag.
To add contents to the HDFS, hadoop -put must be used. For example, if

we had our input data in folder /var/input, running

$ bin/hadoop fs -put /var/input /
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would create the /input folder in the HDFS system, with the same contents
than in the local filesystem. Thus, executing now:

$ bin/hadoop fs -ls /input

would show the folder contents.

4.3 Installation of a MapReduce Service

Once there is a HDFS service running, we can proceed to start a small MapRe-
duce service that uses the former to store and read data.

First, the JobTracker must be started. Configuring it will be straightforward.
First, as before, we will create a folder that it will use as configuration:

$ cd $HADOOP_HOME

$ cp -r conf confJobTracker

Now, the JobTracker has to use the same core-site.xml than the Name-
Node (mainly to know the address the NameNode is listening for connections
at). The other parameter needed is the own JobTracker address. This must
be set in the $HADOOP HOME/confJobTracker/mapred-site.xml file with the
mapred.job.tracker parameter (for example, it could be set to localhost:2244
or any other port the user wishes). Once this is set, the JobTracker can be
started with the hadoop tool (once more, $JAVA HOME must be set):

$ bin/hadoop --config ./confJobTracker jobtracker

And finally, a TaskTracker node must be started. For its minimum configura-
tion, a TaskTracker only needs the same configuration files than the JobTracker
so we could use the same configuration folder. However, we would create a dif-
ferent configuration folder for it as in typical deployments TaskTracker would
have some configuration of their own.

$ cd $HADOOP_HOME

$ cp -r confJobTracker confTaskTracker

Then, the TaskTracker is started by running:

$ bin/hadoop --config ./confTaskTracker tasktracker

Keep in mind nonetheless that both the JobTracker and the TaskTracker are
highly configurable. All the configuration options can be checked in $HADOOP HOME/

src/mapred/mapred-default.xml.
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4.4 Sending a MapReduce Job

To conclude this Section we will program a small MapReduce example that will
be run in the Hadoop cluster we have just built. The goal is to describe how
MapReduce jobs must be sent to the cluster, and how to insert input data and
retrieve output data from the HDFS.

The example to run is a well-known MapReduce program to count the num-
ber of occurrences of words. It uses as input a set of files that contain the text
to analyze, and it gives as output a list containing all the words found and the
times each word appears in the files.

First, we will insert the input files in the /wordcount/input folder of the
HDFS filesystem. We will use as input the .html files in the $HADOOP HOME/docs

folder (and, even once more, remember that $JAVA HOME and $HADOOP HOME

must be set):

$ cd $HADOOP_HOME

$ bin/hadoop fs -mkdir /wc/input

$ bin/hadoop fs -put docs/*html /wc/input

The output folder /wordcount/output where we plan to store the results
will be automatically created by the code. If this was not the case, we would
create it as follows:

$ bin/hadoop fd -mkdir /wc/output

Now, there are several versions of the wordcount program available. As we
aim in this section not to explain how to program MapReduce jobs but only how
to deploy them on Hadoop clusters we will not describe now how to program the
example. More complex MapReduce examples will be described in Section 5.
But now we suggest the reader to use the code available in the Hadoop manual7.
Following the instructions in that manual, the user will get a wordcount.jar

file with the code to be run. Once this file is available, for example in the user
home dir, and assuming the class with the main() method is org.myorg.WC, we
would deploy it on our Hadoop cluster by running:

$ bin/hadoop jar ~/wordcount.jar org.myorg.WC /wc/input /wc/output

Note that the configuration used is the default one, i.e., the one in $HADOOP HOME/

conf. This is enough, as the script only needs to know where the NameNode
is located (which was defined in core-site.xml) to ask for the JobTracker and
send the MapReduce job. Once the job is finished, we can extract the results
from the HDFS:

$ bin/hadoop fs -ls /wc/output

Found 1 items

-rw-r--r-- 3 user supergroup 527728 2010-10-10 12:01 /wc/output/part-r-00000

$ bin/hadoop fs -get /wc/output/part-r-00000 wordCountResults.txt

Results will be stored in the local file wordCountResults.txt.
7http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
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5 Programming a Non-Trivial MapReduce Ex-
ample with Hadoop

The current section illustrates the Hadoop API by means of a practical example.
We have chosen a an application that uses geo-location. The purpose of the
example is to group Wikipedia8 articles by their geographic coordinates and
present the result to the output. The input data is in the form of a .CVS file
offered by DBPedia9, containing article titles and geographical coordinates10.

The map-reduce workflow has the following fixed steps:

1. Map step. The input data is distributed to the mapper nodes in the
hadoop deployment. Each mapper node consumes the input data in raw
format and outputs a set of key-value pairs that serve as input for the next
step. There is no communication between the mapper nodes. In fact, all
mapper nodes are identical and perform the same operation on the input
data. The input data makes the only difference between one mapper node
and another.

2. Combiner step. This is an optional step that acts as a local reduce
for each mapper node. Its goal is to reduce the network traffic by doing
a mapper-local reduction of values that belong to the same keys. The
combiner is actually identical to the reducer, but may not be always us-
able. If the reduce operation is both associative and commutative, then
a mapper-local reduce will not influence the value of the final result and
this means that the combiner is usable.

3. Shuffle step. This step uses the previously-generated key-value pairs as
input. During this step, all values with the same key are being sent to
the same reducer node. At the end of the step the reducers have keys
associated to them and a list with all the values belonging to a key, for
each of the keys they process. The shuffle step is done automatically by
the framework and is the only communication step in the whole workflow.

4. Reduce step. During the reduce step, each reducer aggregates the val-
ues associated to the keys that it is suppose to process. At the end of
the computation, the result is outputted locally. Like the mappers, the
reducers do not communicate with one-another.

Given the fact that all mappers and reducers are created equally, they can
also be replaced easily. Because there is no explicit communication being done
it follows that recovery from failure can be done automatically. In fact, the
Hadoop framework itself is responsible for restarting tasks that have previously
failed. This make the platform itself resilient to failure. To aid task restarting,

8http:\\www.wikipedia.org
9http://dbpedia.org

10http://downloads.dbpedia.org/3.3/en/pagelinks_en.csv.bz2
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it is advisable that neither the mapper nor the reducer have any side effects or
explicit communication.

From an implementation point of view, there are three main functionalities
that need implementing: the mapping operation, the reduction operation and
the job configuration.

5.1 The mapping operation

In order for the Hadoop framework to recognize mapper and reducer implemen-
tation, the Hadoop API offers a base class for them: org.apache.hadoop.mapred.MapReduceBase.

The mapper class also needs to implement the Mapper < K1, V 1,K2, V 2 >
interface and provide functionality for mapping input key-value pairs of type
K1, V 1 to intermediary key-value pairs of type K2, V 2. Input pairs are gen-
erated by an input formatter, originating from the InputFormat base class.
Each entry given by the formatter, called InputSplit, generates one set of input
key-value pairs. For each of these input pairs, the framework automatically
calls the map(K1, V 1, OutputCollector < K2, V 2 >,Reporter) method. Each
input pair can generate one or several intermediary pairs that are collected in
the OutputCollector < K2, V 2 > instance. The produced intermediary pairs,
do not need to be of the same type as the input pairs. The Reporter instance
is a utility that helps in keeping track of job progress.

In the current example, the input data is in text form as a .CVS file. The
input formatter produces one input entry at a time, corresponding to each line
in the input file. As a result, the input value is of type Text. The input key is
of no influence to the rest of the map-reduce process and the LongWritable was
used, which is a class implementing Comparable and Writable for Long values.

The intermediary keys are groups of the form (< rounded − latitude >,<
rounded− longitude >) and are of type Text. Therefore, the intermediary keys
represent the geographic location of a Wikipedia article.

The intermediary value retains the type of the input value and is obtained
by prepending the value of the key to the input value.

The current example produces only one intermediary key-value pairs for each
input pair since each entry in the input file corresponds to only one Wikipedia
article.

In what follows, we detail the implementation of the current example.

public class GeoLocationMapper extends MapReduceBase implements

Mapper<LongWritable, Text, Text, Text> {

// the input key-value pairs are of type LongWritable and Text

// the intermediary key-value pairs are both of type Text

public static String GEO_RSS_URI = "http://www.georss.org/georss/point";

// in these members we store the intermediary key-value pairs

private Text geoLocationKey = new Text();

private Text geoLocationName = new Text();
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// this method is run for each input item give by the input formatter

public void map(LongWritable key, Text value,

OutputCollector<Text, Text> outputCollector, Reporter reporter)

throws IOException {

// this represents one data item

String dataRow = value.toString();

// since these are tab seperated files lets tokenize on tab

StringTokenizer dataTokenizer = new StringTokenizer(dataRow, "\t");

String articleName = dataTokenizer.nextToken();

String pointType = dataTokenizer.nextToken();

String geoPoint = dataTokenizer.nextToken();

// we know that this data row is a GEO RSS type point.

if (GEO_RSS_URI.equals(pointType)) {

// now we process the GEO point data.

StringTokenizer tokenizer = new StringTokenizer(geoPoint, " ");

// obtain the latitude and longitude

String stringLat = tokenizer.nextToken();

String stringLong = tokenizer.nextToken();

double doubleLat = Double.parseDouble(stringLat);

double doubleLong = Double.parseDouble(stringLong);

// round the coordinates to long values

long roundedLat = Math.round(doubleLat);

long roundedLong = Math.round(doubleLong);

// construct the intermediary key

String locationKey = "(" + String.valueOf(roundedLat) + ","

+ String.valueOf(roundedLong) + ")";

// construct the intermediary value

String locationName = URLDecoder.decode(articleName, "UTF-8");

locationName = locationName.replace("_", " ");

locationName = locationName + ":(" + doubleLat + "," + doubleLong + ")";

// store the intermediary key-value pair

geoLocationKey.set(locationKey);

geoLocationName.set(locationName);

// collect the intermediary key-value pair

outputCollector.collect(geoLocationKey, geoLocationName);
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}

}

}

5.2 The reduction operation

As in the case of the mapping operation, the reducer must also extend the
MapReduceBase class. The reducer must implement the Reducer < K2, V 2,K3, V 3 >
interface. Its role is to transform a set of intermediary key-value pairs of type
K2, V 2, to a smaller set of key-value pairs of type K3, V 3. All intermedi-
ary values that share the same key are grouped into a collection. For each of
these groups, the reduce(K2, Iterator < V 2 >,OutputCollector < K3, V 3 >
,Reporter) method is automatically called. Typically, the collection of values
that are associated to the same key, are reduced into zero or one final value.
In contrast to the mapper, the output keys and values need to be of the same
type as the intermediary keys and values. Like the mapper, the reducer can also
report its progress by means of the Reporter instance.

In our current example, the intermediary and output key-value pairs are all
of type Text. The reduce operation itself is actually a concatenation of all the
article titles that have been found in the same geographic location.

The articles are automatically grouped by geographic location since this is
what the intermediary key represents.

In the following we will detail the source code that implements the reduce
operation.

public class GeoLocationReducer extends MapReduceBase implements

Reducer<Text, Text, Text, Text> {

// the intermediary and output key-value pairs are of type Text

// these members store the output key-value pair

private Text outputKey = new Text();

private Text outputValue = new Text();

// this method is called automatically for each intermediary key

// and its corresponding list of values

public void reduce(Text geoLocationKey, Iterator<Text> geoLocationValues,

OutputCollector<Text, Text> results, Reporter reporter)

throws IOException {

// in this case the reducer just creates a list so that the data can be used later

String outputText = "";

// the reducer receives a list of intermediary values for each key

// here we iterate through the list and construct the reduced value

while (geoLocationValues.hasNext()) {

Text locationName = geoLocationValues.next();

outputText = outputText + locationName.toString() + " ,";
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}

// prepare the output key-value pair

outputKey.set(geoLocationKey.toString());

outputValue.set(outputText);

// collect the output key-value pair

results.collect(outputKey, outputValue);

}

}

5.3 The job configuration

To be able to orchestrate job execution, the Hadoop runtime needs to know some
configuration parameters. The most basic of these parameters are the classes
that implement the mapper and reducer functionalities and what formatter the
runtime should use for parsing the input.

For our current example, we have detailed the implementation of these
classes in the previous subsections.

The code behind our example’s configuration can be found below.

public class GeoLocationJob {

// the program entry point

public static void main(String[] args) throws Exception {

// store job configuration

JobConf conf = new JobConf(GeoLocationJob.class);

conf.setJobName("geolocationgroup");

// set the classes of the output key-value pairs

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(Text.class);

// set the mapper and reducer class

conf.setMapperClass(GeoLocationMapper.class);

conf.setReducerClass(GeoLocationReducer.class);

// set the input formatter

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

// the input and output files are taken

// from command line arguments

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));
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// launch the job

JobClient.runJob(conf);

}

}
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Figure 1: Overview of Map-Reduce Sequence
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Figure 2: Hadoop Node Types
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